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EULER3DS is a three dimensional space marching code for computing steady state solutions to 
the Euler equations applied to external flows. The code solves the integral equations of motion in a 
finite volume sense and is thus totally conservative. The algorithm used is called the ALPHA-scheme 
and was developed by the author for this code. This scheme is explicit with either first or second 
order accuracy and is constructed by splitting the fluxes on cell faces to account for upwind signal 
propagation. The code solves the governing equations using either a perfect gas model or an equilib­
rium air gas model due to Srinivasan (Ref. 1). There are six options regarding the grid generation 
schemes employed and the code is fully compatible with the QUICK geometry modeling system. The 
purpose of this document is to describe the code in a manner that will familiarize the user with the 
code's options and structure and enable relatively painless usage of the code. 

2.0 GENERAL THEORY 

2.1 The governing equations 

The governing equations solved by EULER3DS are integral equations representing conservation of 
mass, momentum, and energy. These equations are now described. To begin with, we introduce the 
essential nomenclature. The dyadic E is comprised of the three Cartesian flux vectors and is given 
as 

where the vectors e,f and g are given by 

e= 

QU 

P+Qu
2 

QUV 

QUW 

(E + p)U 

QV 

QUV 

j= P + Qv2 

QVW 

(E + p)V 

QW 
QUW 

g = QVW 

P+Qw
2 

(E+ p)W 

The unit vectors i,J, andk are the basis directions in the Cartesian x,y, and z coordinate system and 
u, v, and ware the corresponding velocity components. p is the static pressure and p is the fluid den­
sity. E is the total energy per unit volume given by the equation 
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where ej is the specific internal energy. The governing integral equation is then given as 

f (V - E) dV = 0 
V 

This equation is transformed into a boundary integral equation using Green's theorem. The result 
is 

fn-FdA = 0 (2.1) 

ilV 

In this equation, n is the outward unit normal vector to the boundary of the volume V. This bound­
ary integral equation is discretized and solved on each of the finite volume cells. This discretization 
process is discussed in the next section. 

It should be noted that in the actual solution algorithm, only four equations are solved since for 
the flows of interest, the total enthalpy is constant. However, this fact is not used in the development 
of the solution algorithm, thus making the algorithm more general. 

2.2 The Space Marching Philosophy 
For this discussion, cons~der the general six sided region shown in Figure 1. 

$> ("I = constant) 

....d1 $> (~= constant) 

@ $> (s = constant) 

Figure 1. General six sided region 
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Equation (2.1) must be applied to a general region of this type. We first recognize that the quantity fidA 

is locally given by 

fldA = (f; X ft])d~d1] on ~+ 

fldA = (ft] X f;)d~d1] on ~-

fldA = (ft] X f~)d1]d~ on ~+ 

fldA = (f~ X ft])d1]d~ on ~-

fldA = (f~ X f;)d~d~ on 1]+ 

fldA = (f; X f~)d~d~ on 1] 
-

where T is the local position vector. At this point, we choose ~ to be the marching direction. This 

means that ~ = constant surfaces are solution surfaces and we must solve for the ~+ solution surface in 

terms of everything else. This requires that the component of Mach number in the ~ direction be super­

sonic. We then restrict these ~ = constant surfaces to be planar and proceed to approximate the inte­

grals over them. With reference to Figure 2, a second order evaluation on the ~+ surface is given by 

where Fe is the Cartesian flux dyadic at the quadrilateral centroid. The actual centroid location is 

4 centroid oj triangle E, TB 

centroid oj quadrilateral, Te 

centroid oj triangle A, TA 

Figure 2. A general quadrilateral region on ~+ = constant 
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determined as follows. For the general planar area, S, the centroid is 

When this formula is applied to the quadrilateral in Fig. 2, we write 

or 

or 

where SA, SB represent the areas of triangles A & B and 'A, rB represent the centroids of these tri­
angles. Now the triangle centroids are given simply as 

and 
_ 1 (_ _ _) 'B = - '2 +'3 +'4 3 

where '1,2,3,4 represent the position vectors to the corners of the quadrilateral region. The right 
hand side of Eq. (2.2) is simply expressed as 

where ~ is a unit vector perpendicular to ~ = constant surfaces and A is the area of the quadrilateral. 

The vector ~ is given by 

8 



AEDC-TR-87-36 

Next, consider a g = constant surface. Figure 3 illustrates this situation. This surface is, in general, 

4 

" B 
"" A 
A ",,~c 
A "" 

1 " 

lit(1t)~C " 

-'f/ 
2 

Figure 3. A typical non-planar g = constant surface 

non-planar. Consequently, its contribution to the integral equation (2.1) is slightly different than that for 

the ~ = constant surface. We seek to approximate 

f (f" X f~) • E d'YJ dC 
;+ 

on this non-planar quadrilateral. We define the quadrilateral centroid in just the same manner as previ­

ously done for the ~ = constant surface. Thus, the integral is approximated by 

F = ~·Fc 

where 

Note that the bracketed terms in this expression represent the ftdA for the triangles A & B of Figure 3. 

This equation is simplified to 
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Finally, for an 11 = constant surface, we define the appropriate integral 

f (F~ X Ft;,) • E. d~ d~ 
71+ 

to be 

where 

The approximation to the integral equation, Eq. (2.1), is then given for the finite volume shown in 
Figure 4 as 

(2.3) 

Figure 4. Generic finite volume approximation 

from which it is clear that the value of E at the next b = constant surface is computed at each integration 

step. This vector E must then be decoded to yield the primitive variable information for the next step. 
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2.3 Decoding 

The general decoding procedure applies to the vector ,". Fe . We consider that we have taken 

an integration step and that Et:~+) is known. We define the basis vector '" to be '" = (~1 • ~2 • ~3) and 
further define the contravariant velocity. W. to be 

where q is the fluid velocity vector. q = (u.v.w). We then write 

E1 =QW 

E2 = P~l + QUW = P~l + UB1 (2.4) 

E3 = P~2 + QVW = P~2 + VEl (2.5) 

E4 = P~3 + QWW = P~3 + WE1 (2.6) 

E5 
(P+E)- _ ( U2+V2+W2)_ 

= Q E1 = Ht E1 = h + 2 E1 (2.7) 

where h is the gas enthalpy and HI is the constant total enthalpy. We define the ratio of enthalpy to 
internal energy to be 

Thus, h= yp 
(y-l)Q 

h 

ypW 
(y-l)El 

Equations (2.4) through (2.6) are solved for velocity components yielding 

U = (E2 - P ~l)/El 

V = (Es - p ~2)/El 

W = (E4 - P ~3)/E1 

Substitution of these expressions into Eq. (2.8) yields 

11 
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Substitution of Eqs. (2.9) and (2.10) into Eq. (2.7) yields a quadratic equation for pressure, p. 

This closed form solution for pressure, P, is possible only in the case of Y = constant for a perfect 
gas. From this value of P, the density, p , is found from the equation 

(2.11) 

which is obtianed from a linear combination of Eqs. (2.4), (2.5), and (2.6). The velocity compo­
nents, u, v, and ware determined from Eq. (2.9). 

For a real gas, an iterative procedure is employed. The first iteration uses y to establish the 
initial guess. The function Q(p) is established to be 

( 
2 2 2) Q(P) = h+ u +v2 +W -Ht 

A Newton iteration yields 

where 

I dQ dh du dv dw Q (P) =-=-+U-+V-+W-
dp dp dp dp dp 

du dv 
The quantities dp' dp' 

dw 
dp 

dh 
are obtained by differentiating Eqs. (2.9). dp 

(2.12) 

(2.13) 

is obtained by 

differentiating Eq. (2.10). This latter step involves the constant Y . This influences the convergence 
path of the Newton iteration but not the result. The general iterative procedure then is to initialize p, 

p, u, v, w, using the constant Y . h is determined by the real gas model as h = h(p,p). Equation 
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(2.12) gives a value of Q and Eq. (2.13) gives Q'. The update is performed generating a new value 
of p from which Eqs. (2.11) and (2.9) give p, u, v, w. This cycle continues until p ceases to vary. 

2.4 Shock Fitting 
EULER3DS is applicable to problems in which the Mach number in the ~ - direction is supersonic. 

Usually, external flow problems of this type have an outer shock boundary. As a result, the code includes 
a shock fitting algorithm which is now described. 

The shock is assumed to be a 6 = constant surface which separates a uniform freestream flow from its 
"shocked" state. The 6 = constant surface is taken to lie just downstream of the shock so points on this 
surface are discontinuously related to the freestream through the Rankine-Hugoniot jump conditions. 
Consider the shock surface in Fig. 5. 

6 = constant 

--->~ '1 

Figure 5. Typical 6 = constant shock surface 

Assume conditions ahead of the shock (eg. : PI, ('1, hb qi) are known and that pressure, P2 , behind 

the shock surface is known. The conservation equations for the fluid states across the shock are given as 

where subscripts N,T denote normal and tangential, respectively. Introducing yi , Y2 to be 
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_ h2 
Y2 = -.­

ei2 

the following equation is obtained by combination of the above conservation laws. 

Combination of continuity and normal momentum also yields an equation for density, Q2 . 

(2.14 ) 

(2.15) 

Thus, for a perfect gas 71 = 72 = y and Eq. (2.14) yields u1N when P2 is known. For a real gas, the 

value of 72 is unknown in Eq. (2.14). Consequently, an initial guess is made for 72 and Eq. (2.14) yields 

a value of U1 N' Equation (2.15) yields Q2. The combination of P2 , Q2 yields h2 , ei2 from which a 

new 72 is determined. A repeat cycle yields a new value of Q2 ,etc. Ths is repeated until Q2 converges. 

Once this portion is completed, values of P2, Q2, 72, h2' ei2, U1 N are known. The value of U1 N is 

now used to determine how to propagate the shock point. In general, for the shock shown in Fig. 5, 

and 

(2.16) 

Since generally at any marching station, '" is known and ([1 is known, the vector Tt is the quantity of 
concern in this equation. Equation (2.16) represents a single scalar equation with the three un-

knowns Xt, Yt, Zt • However, Zt controls the way in which the physical axial coordinate, Z, is related to 

the computational marching coordinate, ~ ,and as such, is specified. Zt = 1 in EULER3DS and conse­

quently Xt, Yt are the two unknowns. An additional relationship is needed in order to solve for these 

quantities. This additional relationship controls the manner in which a shock point propagates relative to 
the existing shock surface. We have freedom in choosing exactly how to propagate a shock point. There 
are three options coded in EULER3DS. They are: 

Option 1: motion along existing 11 = constant lines 

Option 2: along a projection of Ii onto a b = constnnt ~urface 
Option 3: along a cylindrical ray 

14 



AEDC-TR-87-36 

These options are now described. 

Option 1: In this case, that part of T, excluding the z, part, say i, , must be aligned with T~ . 

.. , .. 
.. 

.. , , 

.. -­..... 

• ~. shock at c+Ac 

--

shock at ~ (£ = constant) 

Consequently, we may write i, = sF'g = (x" y,). Substitution of this into Eq. (2.16) yields 
one equation with the single unknown, s. Solution for s then yields the shock slope vec­

tor, T, . The shock position may be updated by integrating this 'vector. 

Option 2: In this case i, is expressed as 

, .. .. 
.. 

, .. .. 
.... .. 

f~ = s(fll X k) 

•• ~.:hockat C+AC 

.. 

1] 

shock at ~ (£ = constant) 

Again, s is the only unknown from which the shock slope T, is determined. 

15 



AEDC-TR-87-36 

Option 3: In this case, " is given by', = sir = s(cos¢ i + sin¢ J) where ¢ is the meridional angle of 

the shock point in a cylindrical system defined by x = r cos ¢ y = r sin ¢. Again, s is 

the only unknown from which the shock slope, " , is determined. 

The shock fitting algorithm thus assumes a value of P2 behind the shock. The remainder of the 

flow variables and the vector it are determined in this routine. 

It should be noted that in the event that P2 < PI at any given point during the calculation, the 

code sets P2 = PI and constructs " in the normal way. The effect of this is that if a shock degener­
ates to a Mach surface, the solution is maintained correctly and the point is propagated along the 
Mach surface correctly. 

3.0 DISCRETIZATION 

The equatons and ideas discussed in Secton 2.0 are implemented on a discretized domain. The 
purpose of this section is to quantify this domain and quantify the numerical implementaion of the 
governing equations on this domain. 

3.1 Geometric Related 

First of all, the code assumes pitch plane symmetry. As mentioned, the solution to the governing 
flow equations is obtained by marching in the!; (i.e., z) direction. Thus, a discretized grid or mesh is 
required at each!; marching station. This mesh has as its four boundaries the following 

~min <=> vehicle surface 

~max <=> shock surface 

1Jmin <=> wind symmetry boundary 

'Y/max <=> lee symmetry boundary 

The actual mesh layout is now described. 

3.1.1 Mesh Layout 

The 'corner grid' is defined to be that net of points located at the corners of the finite volume 
cells. The 'cell center grid' is that net of points occupying the cell centroid locations. The coor­
dinates of both of these grids are known. However, the flow solution is generally known only on the 
'cell center grid' except at boundaries. 

Since the integration is performed in the !; direction, a two-dimensional grid is required at each 
!;-station. Figure 6 illustrates the typical grid layout for this code. 

16 
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body boundary 
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lee 

• corner grid 

ED cell center grid 

Notice that the centroid grid points exist on the symmetry boundaries, but the corner grid is re­
flected across these boundaries. Notice also that cell center grid points are defined on the body and 
the shock. This is to provide flow data on these surfaces instead of one half cell away. These points 
are actually not cell centers but rather segment centers. The coordinates of these points are simply 
the average of their two neighbors. Figure 6 indicates that the index j is associated with the 11 .:oor­
dinate and k is asssociated with the 6 coordinate. The index n is used for the b coordinate. The 
'corner grid' consists of JX by KX points including the reflected symmetry boundary points. This 
means that the 'centroid grid' contains JXl by KXP1 points where JXl = JX -1 and KXP1 = KX + 1. 
There are JXl by KX1 finite volume cells (KX1 = KX - 1). The variables NTOT, NCATOT, and 
NCTOT are used in the code. They are defined as 

NTOT = JX • KX 
NCATOT = JX1 • KXl 
NCTOT = JX1 • KXP1 

Thus, there are NTOT 'corner grid' points, NCATOT cells, and NCTOT 'centroid grid' points. The 
flow solution is computed and stored at the NCTOT 'centroid grid' points. The geometric information 
is stored as follows : 

17 
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XN,YN 
X ,Y 

XCN, YCN 
XC ,YC 

VCELLN 
VCELL 

3.1.2 Grid Generation 

NTOT 'corner grid' points at marching station, n. 
NTOT 'corner grid' points at marching station, n+1. 

NCTOT 'centroid grid' points at n. 
NCTOT 'centroid grid' points at n+ 1. 

NCATOT cell areas at n. 
NCATOT cell areas at n+1. 

The corner grid is determined by a general grid generation algorithm with several options. These 
options include the scheme of Winslow (Ref. 2), Middlecoff's (Ref. 3) application of Thompson's 
(Ref. 4) scheme, Noack's algebraic scheme (Ref. 5), a simple algebraic scheme, and Sorenson's (Ref. 
6) application of Thompson's scheme. All of these grid generation options require a specification of 
both body surface points and shock points. The body surface points are determined by the QUICK 
geometry modeling system (Refs. 7-9) and the shock points are determined by integration of shock 
slopes determined in the shock fitting scheme discussed in section 2.4. Once the corner grid is 
known, the cell center grid is determined by constructing the coordinates of all of the quadrilateral 
centroids as described in section 2.2. 

3.1.3 Body Surface Description 

EULER3DS is designed with only one subroutine which interfaces the code to the particular ge­
ometry being solved. BPOINT takes as input the value of z (or 1; ) and returns JX values of x,y 
which represent the body cross section coordinates at this z station. The meridional placement of 
these grid points on a given body cross section is based on equal arc length in the '11 direction. 
BPOINT is interfaced to the QUICK geometry modeling system. For the given z value, BPOINT 
breaks the cross section contour into NPMAX points (NPMAX presently equals 1000) spaced at 
equal meridional angle increments. The coordinates of these sample points in this fine database are 
obtained by calling the QUICK subroutine CSGEOM. BPOINT then interpolates the JX grid points 
spaced according to equal arc length onto this fine database thus providing the body surface 'corner 
grid' points. 

3.2 Integration Algorithm 

This section expands on the details of the novel integration algorithm used in EULER3DS. We 
begin with the generic integration scheme applied to Equation (2.3) (repeated here for convenience). 

(3.1) 

3.2.1 The Generic Integration Scheme 

Consider Figure 7 as a reference. Equation (3.1) is written in discretized form 
as 

-n+l -n (F:+1/2 j!!+1/2) (-n+l/2 -n+l/2 ) 
Ej ,k+l = Ej ,k+l - j+l/2,k+l - j+l/2,k - Gj+1,k+l/2 - Gj ,k+l/2 (3.2) 

18 
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(j, k + 1/2, n + 1/2) 

(j,k+1,n+1) 

k+1 
(j + 1, k + 1/2, n + 1/2) 

Figure 7. Discretized generic finite volume cell 

where 1!5 j !5 jx1 and 1!5 k !5 kx1. This equation thus produces a solution at all cell center 

points. The body and shock points are treated separately. This scheme obviously cannot be imple­
mented without some decision about how to evaluate the P, G quantities at the cell face centers. 

Consider first the kth ~ = constant cell face on which we wish to evaluate p;+~l!:k (see Fig. 8). 

s = constant cell face 

( j,k+1,n ) ( j,k+1,n+1 ) 

( j,k,n ) --I~itT-

( j,k,n+1 ) 

Figure 8. Typical kth ~ = constant cell face 

From this sketch, it is clear that the four closest centroid points at which the flow data are known are 

those points at (j,k,n), (j,k,n+1), (j,k+1,n), and (j,k+1,n+1). The value of Pj+~l~\ is thus obtained 

from data at these four points. Since the data at the two (n+1) points is not really known apriori, 
estimates which come from a predictor step are used. This makes the overall scheme a 
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predictor-corrector scheme. The rationale for choosing which of the four points to use in comput­

ing ftJ++1%\ is based upon the signal propagation mechanisms within the fluid. This subject is now 

discussed. 

3.2.2 Signal Splitting 

The vector F is a linear combination of e, f, and g and is written as ~. Fe or 

The vectors e, f, and g may be written as 

e=AU !=BU 

where U = ( p , pu , pv , pw , e ) and A, B, and C are rotation matrices which coincide with the 
de dj dg 

Jacobian matrices dU' dU ' and dU ,respectively, for the case of a perfect gas. For a real 

A 
de 

gas, ¢ dU ' etc., but e = AU still holds for the appropriate choice of A. This choice is simply 

h 
the Jacobian A for a perfect gas with 'Y replaced by ei' Thus, if we define a matrix B' as 

then we may write 

F=B*U (3.3) 

In a like manner, we may obtain 

(3.4) 

where A' = ~lA + ~2B + ~3C and ~ (~1 '~2 '~3). Combination of Eqs. (3.3) and (3.4) yields 

Since E is the dependent variable vector and the flux, F , is expressed as a rotation of E through 

the diagonalizable matrix B' A '-1, F may be split into components according to the system character­

istics (eigenvalues of B' A *-1). In fact, B' A ,-1 may be written as 

B*A*-l = TAll 

where A is a diagonal matrix containing the eigenvalues, Ai , of B*A*-l, T is a matrix whose columns 

contain the right eigenvectors, 'i , of B*A*-l, and 11 is a matrix whose rows contain the left eigen­

vectors, li ,of B* A *-1. 

• .-1 
The eigenvalues of B A are given by 
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V 
A Z ---1, ,3 - U 

A _lJY -CZ(~.~)±c!RXi5 
4,S - lJ Z _ CZ(~ • ~) 

where lJ = (~ • q) , Y = (~ • q) and c is the sonic velocity. The left eigenvectors, Ii ,are ob­
tained by solving 

(3.5) 

This is a formidable task. A simpler system to solve is obtained by recognizing that 

A= MAM- l 

de 
where M represents a similarity transformation and A is a Jacobian matrix dU where U is the 

primitive variable vector. Likewise, 

and 

from which 

where and 

Thus we write 

from which Eq. (3.5) becomes 

where Ii ::: MTZi' The vectors Ii are more easily determined and are found to be 

i/ = (aflcZ, 0, al3CZ, -a1ZCZ, -afl) 

il = (-alla12CZ, a13CZ , 0 , -allCZ , allalZ) 

il = (allal3CZ , alZcz , -aucz , 0 , -allal3) 
- T Z Z Z 14 = (0 , -QC a41 , -QC a4Z , -QC a43 , Y -AiU ) 
i/ = (0 , -Qczasl , -Qczasz, -Qczas3 , Y -ASU ) 
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The matrix M is well known to be 

1 0 0 0 0 
U Q 0 0 0 

M= 
v 0 Q 0 0 
W 0 0 Q 0 

u2 + V2 + w2 
QU QV QW 1 

2 y-l 

From this Ii may be determined. The ajk in the Ii vectors is defined to be ajk = ~k - Aj ~k 

The right eigenvectors, 'i , are obtained by solving 

Again a simpler system is obtained as before resulting in 

from which 'i = M ;"fi. The fi are found to be 

where 

and 

From this, the 'i are determined. 

The diagonalization of the matrix B' A ,-1 allows us to write 
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5 

F = FI + F2 + F3 + F4 + Fs = L Fi 
i = 1 

where Pi = TA{r-1jJ; and Ai is zero everywhere except in position (i,i) where the element Ai exists. 

With some manipulation, it is easily shown that this simplifies to 

(3.6) 

which is interesting since it shows that the flux vector component, Pi , has the direction of the jth 

right eigenvector. Since Ai It = It B*A*-l , Eq. (3.6) is also written as 

5 

- T -
Fi = ri Ii F 

The significance of writing F = L Ai ri IT E is that each characteristic piece of P is identified and 
i = 1 

the evaluation of these pieces can take into account the signal propagation directions for these flux 
contributions. 

We began with the problem of determining P on the eh ~ = constant cell face. We now 

have the problem of determining five values of Pi on this face. Two candidate evaluations of the Pi 
are introduced in the following two sections. 

3.2.3 The M-Flux 

The M-flux is styled after a finite volume version of the MacCormack scheme as applied to each 
5 

of the Pi. We will denote this flux as FM = L FMi . With reference to Figure 8, we define Xi to 

i = 1 

be Ai calculated using the ~,~ values corresponding to the cell face under consideration and the 
primitive variables on that face which are obtained by averaging the nearby neighbors. Thus 

where U is the primitive variable vector. Also, 

Note that Xi is an effective eigenvalue on the 6 = constant cell face. Then we write 

(3.7) 

Thus, if the jth eigenvalue is positive ( Xi > 0 ), the information for Pi on the eh ~ = constant cell 

face comes from points "upwind" at n and "downwind" at n+l or along the characteristic. The 

sgn\Xi I coefficient is necessary to cause PMi = 0 in the event that Xi = 0 as indicated by Eq. (3.6). 

The quantity evaluated at n+ 1 results from a predictor step in which 
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(3.8) 

In practice, the evaluation of Eq. (3.7) is not unique since Pi =Ai ri IT E . Several methods of 

evaluation were tried and one clearly worked best. The portions of Eq. (3.6) which involve the geo­
metric data, f and 'if , are unique and therefore result in no ambiquity. However, the parts which 

involve the flow variables may be constructed in a number of ways. If we seek evaluation of Pi on 

the 6 = constant face under investigation then f, f are clearly known at level n and are known for 

level n+l once the n+l grid is established. If we discover that Xi for this face is positive, for ex­

ample, then we evaluate Pi as 

- T -
Fi =Ai ri Ii E 

where Ai = Xi and ri IT E is evaluated using f, f at n or n+1 as appropriate, and the primitive vari­

ables from point (j,k) for the level n value, and point (j,k+1) for the level n+l value. 

It must be noted that the M-flux evaluation of the Pi is perfectly consistent with a characteristic 

like method even though the n+l quantity is 'downwind'. 

3.2.4 The U-Flux 

The U-flux evaluation candidate results from a belief that all information must come from 'up­

wind' defined in the following sense: If An > 0 at a point then all information for the integration step 

to n+1 must come from the negative coordinate increment side of this point. This attitude is ridicu­

lous unless A = 0 but never-the-Iess, the result of this thinking is an evaluation of Pu. as 
I 

F- sgnliJ[C - )n C -)ntl ] 
Ui = --2-- Fie j,ktl-ai + Fi j,ktai (3.9) 

where subscript e denotes 'extrapolated value' and 

CP· )'! k 1 = 2CP·)'! k - cp·)n . Ie J, t -ai I J, tai I j,ktai-sgn(Ai) (3.10) 

As in the case of the M-flux, practice has shown that a better formula is to use the appropri-

ate f, f vectors for the cell face under consideration and use the primitive variables from the 'up-

wind' point indicated but use Xi instead of Ai at the upwind point. So, for instance, (P;)7.kt(Ji in Eq. 

(3.10) is evaluated as 

- n • T -
CFDj,ktai = CADCri Ii E)j,ktai 

where the left and right eigenvectors and E use primitive variables from point (j,k+ai) and f, f 
values appropriate for the cell face in question. As in the case of the M-flux, the quantities required 

at n+1 are assumed to be known via an upwind predictor step in which Pi is obtained by Eq. (3.8). 

Either of the M-flux or the U-flux method will produce stable numerical results. These two schemes, 
however, exhibit opposite phase error characteristics. It is for this reason that these two schemes are 
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combined into a one parameter family of schemes in an attempt to produce a scheme superior to 
either of the individual schemes. The result is called the ALPHA-scheme which is the subject of the 
next section. Fromm (Ref. 10) tried something similar to this for a simple scalar linear equation. 

3.2.5 The ALPHA-scheme 

To begin the discussion of the ALPHA-scheme, we simply define the flux on the typical s = con­
stant cell face to be a linear combination of the M-flux and the V-flux. That is, we take 

When Q! = 1, we use entirely the M-flux and Q! = 0 gives the V-flux. A value of Q! = .5 weights each 
part equally and exhibits superior dispersive properties to either M or V separately. Experience has 
shown that for either M or V separately, dispersion grows dramatically worse as the local Courant 
number becomes small. The Q!-scheme with Q! =.5, however, is quite insensitive to Courant number. 

This section is ended with a summary of the overall integration algorithm. Figure 9 is used as a 
reference. 

surface n+l i k, ~ 

surface n 

row k+2 

k+1 solution point 

row k+1 

row k 

point (j+1,k+1,n) 

j , '11 

Figure 9. Cell layout for the ALPHA-scheme 
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From Eq. (3.2), we write 

predictor : 

5 5 

EJ,t~l = EJ,kt1 - I [CFDJ'kt1 - CFi)J,k] - I [CGDJt1'kt1 - CGDJ,kt1] (3.11) 
i = 1 i = 1 

where, for example, on the kth ~ = constant face, 

with 

and 

and 

It is understood that quantities such as ().DJ,k are evaluated using the primitive variables at solution 

point (j,k,n) and values of ~, ~ on the face in question (eg., in this case ~Z ' r; ). This is be­

cause ~, ~ are face quantities and have no meaning at solution points. 

Thus, application of Eq. (3.11) gives Eii+f as a predicted solution. The decoding routine dis­

cussed in section (2.3) will provide the primitive variables at this solution point provided a value 

for ~iiIT is known. This requirement essentially translates to knowing the grid at n+1 which is ob­
tained by the grid generation scheme once the body and shock boundary points are known. The 

body points are known at n+1 by virtue of the QUICK geometry modeling system, and the shock 

points are known at n+1 by integrating the nth level shock slope vector, if , obtained in the shock 

fitting routine. Thus, decoding is done and all information at n+1 is available. The corrector step is 

then taken using 

corrector : 

5 [ ] 5 [ ] 
-nt1 -n - nt1/2 - IIt1/2 - nt1/2 - nt1/2 

Ej,kt1 = Ej,kt1 -.I CFDj,kt1 - CFi)j,k -.I CGi)jt1,kt1 - CGDj,kt1 
1=1 1=1 

where, for example 

- nt 1/2 - -
CFDj,k = a FMi + (1- a) FUi 
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with PMi given by Eq. (3.7) and PUi given by Eqs. (3.9) and (3.10). Note that the direction deci­

sion depends on ai . This must be based on nth level XI values both in the predictor and the cor-

rector. However, in the evaluation of (Pj)nIT, such as is needed in Eq. (3.7) the Xi used there is 

obtained from n+1 data. 

3.3 Boundary Conditions 

The integration algorithm described in the previous section is applicable to general solution 
points. There are four boundaries which require special treatment. The two symmetry boundaries are 
handled with a simple reflection procedure. The body boundary condition influences the solution at 
the solution point just off the body since computation of this point requires the body flux information. 
This flux information simply enforces the surface tangency requirement. The solution at the point 
directly on the body is determined with a half cell matching procedure. Following each predictor and 
corrector step, the surface tangency condition is enforced explicitly with Abbett's method (Ref. 11). 

At the shock surface, the point at k = kx just a half cell inside the shock requires the flux at the 
shock. The algorithm upwinds normally based on the eigenvalues except that when data is needed 
outside the shock cell face for the flux at this face, the values on the shock are used instead. The 
shock point is computed with a half cell matching procedure identical to that at the body. This pro­
vides a complete solution at the shock from which only the pressure is kept. The shock fitting routine 
is then used to enforce the Rankine-Hugoniot jump conditions. 

4.0 THE STARTUP PROBLEM 

EULER3DS solves the inviscid steady flow equations. Consequently, the initial solution surface 
from which it starts marching must theoretically be a correct steady state solution. This can be 
achieved in one of two ways generally. If the nosetip of the body in question is a conical nosetip, 
then an "arbitrary" initial solution may be marched with EULER3DS down this hypothetical conical 
body (continuation of conical nosetip) until a steady conical solution is reached. This conical solution 
may then be scaled back to the nosetip station and used as the initial solution surface for the actual 
body. The second way applies to bodies with non-conical nosetips. In this case a separate computer 
code is required to solve for'the steady state solution as the time asymptotic solution to the unsteady 
equations. The first of these two ways is the only method utilized in this work. 

4.1 Initial Solution 

Before EULER3DS can begin computing, an initial solution msut be provided. EULER3DS 
reads this initial solution from FORTRAN unit 'IRSTRT'. The sequence of read statements used is 

READ (IRSTRT, END=4444) JX,KX 
READ (IRSTRT) XREFM, YREFM,ZREFM,XFOR, YFOR,ZFOR,XMOM, YMOM,ZMOM 
NTOT=JX*KX 
NCTOT=(JX-1) * (KX+l) 

READ (IRSTRT) (P(L) ,RHO(L) ,U(L), V(L), W(L) ,L=l,NCTOT) 
, (X(L) , Y(L) ,L=l,NTOT) ,Z 

The information required by these read statements must have been generated and written out in this 
manner by the user prior to execution of EULER3DS. 

The first read statement expects the values of JX, KX. These represent the number of points in 
the 'corner grid' around the body and between body and shock respectively. 

The second read statement reads information concerning force and moment loads. The vector 
(XREFM, YREFM, ZREFM) represents the coordinates of the point about which the moment due to 
pressure is computed. The vector (XFOR, YFOR, ZFOR) represents the accumulated force vector 
for that portion of the body upstream of the current station. This vector is structured as 
(-NORMAL, SIDE, AXIAL). The vector (XMOM, YMOM, ZMOM) is the accumulated moment 
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about (XREFM, YREFM, ZREFM) due to the pressure forces. Note that the units on these quanti­
ties depend upon the units of the code's (x,y,z,p) values. The code's p values are really p/PINF and 
it's x,y,z units are arbitrary. This results in a force per unit reference area per unit pressure and a 
moment per unit reference area squared per unit pressure. These are, in effect, force and moment 
coefficients. Note that the reference area is the square of the physical length of a unit x,y, or z code 
element. 

The third read statement reads the values of pressure, density, and velocity components at each 
point in the 'cell center grid' (NCTOT points) and the grid coordinates of the 'corner grid' (NTOT 
points) plus the value of z at this station. See Figure 6 in section (3.1.1) for a reference on the 
mesh layout. 

The user is responsible for providing this information initially to EULER3DS to begin computa­
tion. EULER3DS produces as output on FORTRAN unit 'IRSTRT + l' subsequent solutions in this 
format for future startups. 

5.0 INPUT DATA 

In addition to the initial solution data file on FORTRAN unit 'IRSTRT', EULER3DS also reads 
input from unit 5 and unit 15. The data on unit 15 is geometry definition data which is created by 
the QUICK geometry modeling system described in Refs. (7-9). A description of this package is be­
yond the scope of this report. FORTRAN unit 5 is read by EULER3DS to provide various parame­
ters which control various aspects of the code. These parameters are described in the next subsec­
tion. 

5.1 Input Parameter Description 

The input parameters required by EULER3DS are cast into two basic categories. These are 
'general input' and 'grid related input'. The 'general input' supplies parameters via the FORTRAN 
NAMELIST called 'NAMLST' while 'grid related input' is supplied through a FORTRAN NAMELIST 
called 'GRDNAM'. The parameters contained in 'NAMLST' are now listed with their defaults indi­
cated in parantheses and a brief description of each follows. 

IRSTRT (10) 
NGAS (0) 
IORDER 
IS HOCK 
NSTEP 
NOUT 
lOUT 
NGRD 
ALFA 
CN 
FSMACH 
PINF 
RHOINF 
RELAX 
GAM 
ALPHA 
NPLT 
NDSK 

(1) 
(3) 
(1) 
(1) 
(0) 
(100) 
(0.5) 
(0.95) 
(no default) 

(1.0) 
(1.0) 
(1.0) 
(1.4) 
(0.) 

(10000) 
(10000) 

IRSTRT: FORTRAN unit number for initial data surface (NOTE: output solution is on unit irstrt+l) 
NGAS: (= 0 for perfect gas) or (= 1 for equilibrium air real gas) 
IORDER: (= 1 for first order) or (= 2 for second order) 
ISHOCK: (= 1 for shock point propagation along existing 11 = constant lines) 

or (= 2 for propagation along projection of shock normal onto 1; = constant surface) 
or (= 3 for propagation along cylindrical rays) 

NSTEP: number of marching steps this run 
NOUT: print out frequency on unit 6 (print every NOUT steps) 
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ALFA: alpha scheme parameter (0.= pure upwind, 1.= modified Mac.) not used when iorder=1 
CN: Courant number. max value=1 for stability 
FSMACH: freestream Mach no. (no default) 
PINFS1: freestream pressure in Sl units(needed for real gas option only! do not include for perfect 

gas) 
RINFS1: freestream density in SI units(needed for real gas option only! do not include for perfect 

gas) 
RELAX: relaxation parameter used in grid line relaxation scheme 
GAM: perfect gas specific heat ratio 
ALPHA: angle of attack in degrees 
NPL T: plot output frequency for genplot (plot every NPL T steps) 
NDSK: restart solution output frequency (write out every NDSK steps) 

Next, the parameters contained in 'GRDNAM' are listed with their defaults indicated in paren-
theses and a brief description of each follows. 

MGRD (4) 
EPSSP (no default) 
EPSCP (no default) 

MGRD: (1=elliptical Laplace's equation grid) 
or (2=elliptical Poisson equation (pi q by Ref 3.» 
or (3=algebraic grid with Laplace smoothing (Ref 5.» 
or (4=simple algebraic grid(equal space from body to shock» 
or (5=elliptical Poisson equation (p/q by Ref 6.» 

EPSSP: Used only when MGRD=3 
(0. = no orthogonality at wall) 

or (1. = max orthogonality at wall) 
EPSCP: Used only when MGRD=3 

(0. = no clustering toward wall) 
or (1. = max clustering toward wall) 

NOTE: For option 5, the plq control functions are based on a requirement of orthogonality at 
the body and first cell spacing of the initial grid estimate before relaxation. This may not be satisfac­
tory in all cases. The requirement of orthogonality is met by bisecting the angle between (j-1,j) and 
(j,j+1) segments. This procedure gives reasonable results even at a pointed tip. 

The only parameters one should usually need to prescribe to run a perfect gas solution are: 

IORDER (if second order is desired) 
NSTEP 
NOUT 
FSMACH 
ALPHA 

6.0 SUMMARY 

EULER3DS is a robust 3-D space marching code for external inviscid supersonic flows about 
arbitrary geometries. The code has a variety of options for various circumstances. The use of 
IORDER=1 is recommended for situations with exceptionally strong shocks, or steep gradients, particU­
larly during sudden startups. Once this sudden behavior has passed, the user may switch to 
IORDER=2. 

Caution must be used in choosing the parameter ISHOCK. One helpful feature of EULER3DS 
is that points on the body contour are spaced based on equal arclength. This maintains a uniformity 
in the body grid. The shock point spacing, however, is an ever evolving situation depending on the 
shock shape and its evolution in the b direction, and on the way the shock points are propagated. 
The method with the greatest chance of success for an arbitrary problem is ISHOCK=3 (i.e., propaga­
tion along cylindrical rays in a b = constant plane. When this occasionally causes shock points to be-
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come spaced improperly over some b distance, the user must explore the other options. The author 
has developed a method which looks very promising for propagating shock points based on the shape 
of the body contour. This option is not present in EULER3DS however. 

Regarding the grid generation schemes, the best advice is to use the simplest scheme which will 
work for the particular problem being solved. The order of preference would be MGRD=4,3, 1,2,5. 
MGRD=4,3,or 1 will work for most problems. MGRD=2 and 5 represent a level of sophistication 
which results in clustering capability at the expense of robustness for some shapes. 
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